
Tim Sagaster, BSc

RavenOS
A Real Time Operating System based on SmartOS

Bachelor’s Thesis
to achieve the university degree of

Bachelor of Science
Bachelor’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor
Univ.-Prof. Dipl.-Inf. Univ. Dr.rer.nat. Marcel Carsten Baunach

Institute of Technical Informatics
Head: Univ.-Prof. Dipl.-Inform. Dr.sc.ETH Kay Uwe Römer

Graz, June 2021

Abstract

The founding of the Aero Space Team Graz (ASTG) at the end of 2019, with the goal to
develop and manufacture rockets, necessitated the development of a Real Time Operat-
ing System (RTOS). This thesis follows the steps needed to develop a functioning RTOS
called RavenOS. RavenOS is based on SmartOS, which is developed by the Embedded
Automotive Systems (EAS) group at TU Graz, and aims to provide the same Application
Programming Interface (API). The implementation of the kernel diers in many parts due
to the dierent architectures. RavenOS uses events and resources to provide synchroniza-
tion for multi tasked applications. The RTOS will be used as the foundation for further
development to fulll the needs of amateur rocketry.

I

Acknowledgements

This thesis was written in the academic year 2020/2021 at the Embedded Automotive
Systems (EAS) group at the Institute of Technical Informatics (ITI) at TU Graz.

I would rst like to thank my supervisor Professor Marcel Baunach, whose expertise
was invaluable and who made this thesis possible by allowing me to use resources from
lectures and laboratories held by his group. I would further thank all of his colleagues at
the EAS group, who helped me with any problems I encountered.

I would like to express my gratitude towards all of the members of the Aero Space
Team Graz (ASTG), who work tirelessly on the projects that give this thesis practical
use.

Lastly, I want to thank my girlfriend, family and friends, who had to endure endless
conversations about this thesis and problems I encountered while developing RavenOS,
for their patience and helping me to rest my mind when I was not writing.

Graz, June 2021 Tim Sagaster

II

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Structure . 2
1.4 Resources . 2
1.5 Tools . 2

2 Overview 4
2.1 Tasks . 4
2.2 Operation Modes and Exception Handling 5
2.3 The Timeline . 5
2.4 Synchronization . 5

3 Time Management 7
3.1 General Conguration . 7
3.2 System Time . 7

4 Kernel Data Structures 9
4.1 Memory Layout . 9
4.2 Task Control Blocks (TCBs) . 9
4.3 Task Queues . 10
4.4 Task Stack . 11

5 Kernel and Exceptions 12
5.1 Processor Modes . 12
5.2 Exception Entry . 12
5.3 Exception Return . 13
5.4 The Dispatcher . 13
5.5 Kernel Entry and Exit . 14

6 Supervisor Calls and Scheduler 15
6.1 Supervisor Calls (SVCalls) . 15

6.1.1 SVCalls in ARM . 15
6.1.2 Parameters and Return Values . 15

6.2 Scheduler . 17
6.2.1 PendSV . 17

III

6.2.2 System Timer Interrupts . 18

7 Events 19
7.1 Event Control Blocks (ECBs) . 19
7.2 Event SVCalls . 19

7.2.1 Wait Event Until . 19
7.2.2 Set Event . 20
7.2.3 Clear Event . 20

7.3 Event Functions . 20

8 Resource Management 21
8.1 Resource Control Blocks (RCBs) . 21
8.2 Resource SVCalls . 21

8.2.1 Get Resource . 22
8.2.2 Release Resource . 22

8.3 Resource Functions . 22
8.4 Scheduler Protocol . 22
8.5 Example Application . 23

9 Conclusion and Outlook 26
9.1 Conclusion . 26
9.2 Outlook . 26

Bibliography 27

A Acronyms 28

B Example Application 30
B.1 Application Code . 30
B.2 Output . 32

C Generated Source Documentation 34

IV

Chapter 1

Introduction

This thesis describes the process of writing an RTOS for the ARMv7-M architecture.
The RTOS created has the name RavenOS and is based on SmartOS, more precisely on
the SmartOS version that is recreated by Students in the Real-Time Operating Systems
Laboratory (448.026) held by the EAS Group at the ITI at TU Graz (RTOS Lab).

1.1 Motivation

At the end of 2019, the Aero Space Team Graz (ASTG)1 was founded. The goal of this
interdisciplinary team of university students in Graz is to develop, manufacture and test
rockets, intending to compete in the European Rocketry Challenge (EuRoc)2 in Portugal
and the Spaceport America Cup (SAC)3 in New Mexico.

This team’s purpose is not only to take part in competitions but also to pursue innova-
tion and research, therefore it was decided to develop an in-house RTOS which can be used
in the varying projects, instead of using a third party RTOS. To eliminate the problem of
porting the RTOS to multiple architectures, a common Micro Controller Unit (MCU) was
selected. The decision was made to use the dual core MCU STM32H745ZI from STMicro-
electronics4 with a Cortex-M7 and a Cortex-M4 core. This MCU might be a bit excessive
for most tasks, but it should provide most functionality the team could ever need. For
now, only the more powerful Cortex-M7 core of the MCU is used for simplicity.

Taking advantage of this situation, I contacted Professor Marcel Baunach for a po-
tential bachelor thesis. Being the head of the EAS Group at the ITI at TU Graz, the
very same group that holds the RTOS Lab course, he was the ideal supervisor for this
project. He agreed to supervise this thesis, generously allowing me to use resources of
the RTOS Lab. The RTOS Lab uses the MSP430 MCU from Texas Instruments which is
based on a dierent processor architecture.

1www.astg.at
2www.euroc.pt
3www.spaceportamericacup.com
4www.st.com

1

CHAPTER 1. INTRODUCTION 2

1.2 Objective

The aim of this thesis is to implement the basic functionality of an RTOS. Therefore, the
lab guide[2] from the RTOS Lab will be followed and the functionalities described there
will be implemented on this architecture. In addition, a documentation for RavenOS will
be made to aid further development of the RTOS by future members of the ASTG.

1.3 Structure

The basic structure of this thesis will follow the structure of the lab guide[2].
First, in Chapter 2, a general overview of the design philosophy of RavenOS is given.
In Chapter 3, the implementation of the system timer and the general conguration

of the MCU is explained.
In Chapter 4, the layout of the relevant memory sections of the MCU is shown. The

data structures needed for tasks are outlined, this includes the TCB, task queues and the
individual task stacks.

In Chapter 5, the way the ARM architecture handles exceptions and how the RTOS
uses this, to enter and exit the kernel is described.

In Chapter 6, the dierent exception types that can be used to enter kernel mode are
explained.

In Chapter 7, events and their Control Block (CB) and SVCalls are described.
In Chapter 8, the CB and SVCalls of resources are explained. In addition the sched-

uler protocol used in RavenOS is explained in detail.
Lastly, in Chapter 9, a short summary is given. Furthermore a future outlook on

how the RTOS will be used and improved upon is outlined.

1.4 Resources

As mentioned before, the lab guide[2] from the RTOS Lab was used as foundation for the
development process. Additionally, some parts of the framework of the RTOS Lab were
used and adapted. This includes mainly the data structures used within the kernel and
some macros used to place these structures in the correct memory sections.

For information on how the Cortex-M7 works, the programming manual[4] was used.
To correctly congure the STM32H745ZI, the corresponding data sheet[3] was used.
For information on the subroutine call standard of the ARM architecture, the docu-

mentation [1] from ARM was used.

1.5 Tools

The STM32CubeIDE 1.4.25 from STMicroelectronics was used for the development pro-
cess. This provided powerful debugging capabilities as well as the possibility to automat-
ically generate basic code for initializing and setting up the MCU correctly.

The STM32CubeIDE comes with an integrated toolchain to compile the project. The
version used for this thesis was ”GNU Tools for STM32 7-2018-q2-update”, which is a

5www.st.com/en/development-tools/stm32cubeide.html

CHAPTER 1. INTRODUCTION 3

patched version by STMicroelectronics of the ”GNU ARM Embedded 7-2018-q2-update”
toolchain.

For the development process, the development board Nucleo-H745ZI-Q6 from STMi-
croelectronics was used.

For generating the documentation in Appendix C, Doxygen version 1.9.1 from www.

doxygen.nl was used.
For debugging and generating Figure 8.2 in Chapter 8, the Logic Analyzer from AZ-

Delivery7 was used together with the Logic software from Saleae 8.

6www.st.com/en/evaluation-tools/nucleo-h745zi-q.html
7www.az-delivery.de/en/products/saleae-logic-analyzer
8www.saleae.com/downloads/

